Wednesday, June 12, 2013

1306.2490 (P. Dey et al.)

Crossover from injection to tunneling conduction mode and associated
magneto-resistance in a single $Fe_{3}O_{4}$(111)/$Alq_{3}$/Co spin-valve

P. Dey, R. Rawat, S. R. Potdar, R. J. Choudhary, A. Banerjee
We demonstrate interface energy level engineering, exploiting the modification in energy band structure across Verwey phase transition of $Fe_{3}O_{4}$ electrode, in a $Fe_{3}O_{4}$(111)/$Alq_{3}$/Co vertical spin-valve (SV) device. Experimental results on device characteristics I-V) study exhibit a transition in conduction mode from carrier injection to tunneling across Verwey transition temperature ($T_{V}$) of $Fe_{3}O_{4}$ electrode. Both giant magneto-resistance (GMR) and tunneling MR (TMR) have been observed in a single SV device as a function of temperature, below and above $T_{V}$, respectively. Appearance of GMR, accompanied by injection limited natural Schottky-like I-V characteristics, provide evidences of spin injection at electrode/$Alq_{3}$ interface and transport through molecular orbitals in this SV device. Features of TMR exhibit significant differences from that of GMR. This is due to the dominant hyperfine-field interaction in the multi-step tunneling regime. We have achieved room-temperature SV operation in our device. A phenomenological model for device operation has been proposed to explain the transition in the conduction mode and associated MR features across $T_{V}$. We propose that the tuning of charge gap at Fermi level across Verwey transition due to charge ordering on the octahedral iron sites of $Fe_{3}O_{4}$ results in a corresponding tuning of conduction mode causing this unique cross over from GMR to TMR in this ferrite-based organic SV.
View original:

No comments:

Post a Comment