Marco Casadei, Xinguo Ren, Patrick Rinke, Angel Rubio, Matthias Scheffler
The isostructural {\alpha}-{\gamma} phase transition in cerium is analyzed using density-functional theory with different exchange-correlation functionals, in particular the PBE0 hybrid functional and the exact- exchange plus correlation in the random-phase approximation [(EX+cRPA)@PBE0] approach. We show that the Hartree-Fock exchange part of the hybrid functional actuates two distinct solutions at zero temperature that can be associated with the {\alpha} and {\gamma} phases of cerium. However, despite the relatively good structural and magnetic properties, PBE0 predicts the {\gamma} phase to be the stable phase at ambient pressure and zero temperature, in contradiction with low temperature experiments. EX+cRPA reverses the energetic ordering, which emphasizes the importance of correlation for rare- earth systems.
View original:
http://arxiv.org/abs/1209.5970
No comments:
Post a Comment