Monday, July 15, 2013

1307.3347 (Jun Hee Lee et al.)

Strong coupling of Jahn-Teller distortion to oxygen-octahedron rotation
and functional properties in epitaxially-strained orthorhombic LaMnO$_3$

Jun Hee Lee, Kris T. Delaney, Eric Bousquet, Nicola A. Spaldin, Karin M. Rabe
First-principles calculations reveal a large cooperative coupling of Jahn-Teller (JT) distortion to oxygen-octahedron rotations in perovskite LaMnO$_3$. The combination of the two distortions is responsible for stabilizing the strongly orthorhombic $A$-AFM insulating ($I$) $Pbnm$ ground state relative to a metallic ferromagnetic (FM-$M$) phase. However, epitaxial strain due to coherent matching to a crystalline substrate can change the relative stability of the two states. In particular, coherent matching to a square-lattice substrate favors the less orthorhombic FM-$M$ phase, with the $A$-AFM phase stabilized at higher values of tensile epitaxial strain due to its larger volume per formula unit, resulting in a coupled magnetic and metal-insulator transition at a critical strain close to 1%. At the phase boundary, colossal magneto-resistance is expected. Tensile epitaxial strain enhances the JT distortion and opens the band gap in the $A$-AFM-$I$ $c$-$Pbnm$ phase, offering the opportunity for band-gap engineering. Compressive epitaxial strain induces an orientational transition within the FM-$M$ phase from $c$-$Pbnm$ to $ab$-$Pbnm$ with a change in the direction of the magnetic easy axis relative to the substrate, yielding strain-controlled magnetization at the phase boundary. The strong couplings between the JT distortion, the oxygen-octahedron rotations and the magnetic and electronic properties, and associated functional behavior, motivate interest in other orthorhombic $Pbnm$ perovskites with large JT distortions, which should also exhibit a rich variety of coupled magnetic, structural and electronic phase transitions driven by epitaxial strain.
View original:

No comments:

Post a Comment