N. d'Ambrumenil, R. H. Morf
We consider the effect of disorder on the themopower in quantum Hall systems. For a sample in the Corbino geometry, where dissipative currents are not carried by edge states, we find that thermopower behaves at high temperatures like a system with a gap and has a maximum which increases as the temperature is reduced. At lower temperatures this maximum reduces as a function of temperature as a result of tunneling across saddle points in the background potential. Our model assumes that the mean saddle point height varies linearly with the deviation in filling factor from the quantized value. We test this hypothesis against observations for the dissipative electrical conductance as a function of temperature and field and find good agreement with experiment around the minimum.
View original:
http://arxiv.org/abs/1304.2153
No comments:
Post a Comment