R. L. Heinisch, F. X. Bronold, H. Fehske
Guided by the analogy to Mie scattering of light on small particles we show that the propagation of a Dirac-electron wave in graphene can be manipulated by a circular gated region acting as a quatum dot. Large dots enable electron lensing, while for smaller dots resonant scattering entails electron confinement in quasibound states. Forward scattering and Klein tunneling can be almost switched off for small dots by a Fano resonance arising from the interference between resonant scattering and the background partition.
View original:
http://arxiv.org/abs/1301.5427
No comments:
Post a Comment