Shuai Dong, Qinfang Zhang, Seiji Yunoki, J. -M. Liu, Elbio Dagotto
The two-orbital double-exchange model is employed for the study of the magnetic and orbital orders in ($R$MnO$_3$)$_n$/($A$MnO$_3$)$_{2n}$ ($R$: rare earths; $A$: alkaline earths) superlattices. The A-type antiferromagnetic order is observed in a broad region of parameter space for the case of SrTiO$_3$ as substrate, in agreement with recent experiments and first-principles calculations using these superlattices. In addition, also a C-type antiferromagnetic state is predicted to be stabilized when using substrates like LaAlO$_3$ with smaller lattice constants than SrTiO$_3$, again in agreement with first principles results. The physical mechanism for the stabilization of the A- and C- magnetic transitions is driven by the orbital splitting of the $x^2-y^2$ and $3z^2-r^2$ orbitals. This splitting is induced by the $Q_3$ mode of Jahn-Teller distortions created by the strain induced by the substrates. In addition to the special example of (LaMnO$_3$)$_n$/(SrMnO$_3$)$_{2n}$, our phase diagrams can be valuable for the case where the superlattices are prepared employing narrow bandwidth manganites. In particular, several non-homogenous magnetic profiles are predicted to occur in narrow bandwidth superlattices, highlighting the importance of carrying out investigations in this mostly unexplored area of research.
View original:
http://arxiv.org/abs/1211.1943
No comments:
Post a Comment