Wednesday, August 22, 2012

1208.4308 (T. Hu et al.)

Non-Fermi liquid behavior with and without quantum criticality in
Ce(1-x)Yb(x)CoIn(5)
   [PDF]

T. Hu, Y. P. Singh, L. Shu, M. Janoschek, M. Dzero, M. B. Maple, Carmen C. Almasan
One of the greatest challenges to Landau's Fermi liquid theory - the standard theory of metals - is presented by complex materials with strong electronic correlations. In these materials, non-Fermi liquid transport and thermodynamic properties are often explained by the presence of a continuous quantum phase transition which happens at a quantum critical point (QCP). A QCP can be revealed by applying pressure, magnetic field, or changing the chemical composition. In the heavy-fermion compound CeCoIn$_5$, the QCP is assumed to play a decisive role in defining the microscopic structure of both normal and superconducting states. However, the question of whether QCP must be present in the material's phase diagram to induce non-Fermi liquid behavior and trigger superconductivity remains open. Here we show that the full suppression of the field-induced QCP in CeCoIn$_5$ by doping with Yb has surprisingly little impact on both unconventional superconductivity and non-Fermi liquid behavior. This implies that the non-Fermi liquid metallic behavior could be a new state of matter in its own right rather then a consequence of the underlying quantum phase transition.
View original: http://arxiv.org/abs/1208.4308

No comments:

Post a Comment