Yoshiki Imai, Katsunori Wakabayashi, Manfred Sigrist
Motivated by Sr2RuO4 the magnetic properties of edge states in a two-band spin-triplet superconductor with electron- and hole-like Fermi surfaces are investigated assuming chiral p-wave pairing symmetry. The two bands correspond to the alpha-beta-bands of Sr2RuO4 and are modeled within a tight-binding model including inter-orbital hybridization and spin-orbit coupling effects. Including superconductivity the quasiparticle spectrum is determined by means of a self-consistent Bogolyubov-de Gennes calculation. While a full quasiparticle excitation gap appears in the bulk, gapless states form at the edges which produce spontaneous spin and/or charge currents. The spin current is the result of the specific band structure while the charge current originates from the superconducting condensate. Together they induce a small spin polarization at the edge. Furthermore onsite Coulomb repulsion is included to show that the edge states are unstable against the formation of a Stoner-like spin polarization of the edge states. Through spin-orbit coupling the current- and the correlation-induced magnetism are coupled to the orientation of the chirality of the superconducting condensate. We speculate that this type of phenomenon could yield a compensation of the magnetic fields induced by currents and also explain the negative result in the recent experimental search for chiral edge currents.
View original:
http://arxiv.org/abs/1205.1591
No comments:
Post a Comment