M. Siahatgar, B. Schmidt, G. Zwicknagl, P. Thalmeier
The magnetic correlations, local moments and the susceptibility in the correlated 2D Kondo lattice model at half filling are investigated. We calculate their systematic dependence on the control parameters J_K/t and U/t. An unbiased and reliable exact diagonalization (ED) approach for ground state properties as well as the finite temperature Lanczos method (FTLM) for specific heat and the uniform susceptibility are employed for small tiles on the square lattice. They lead to two major results: Firstly we show that the screened local moment exhibits non-monotonic behavior as a function of U for weak Kondo coupling J_K. Secondly the temperature dependence of the susceptibility obtained from FTLM allows to extract the dependence of the characteristic Kondo temperature scale T* on the correlation strength U. A monotonic increase of T* for small U is found resolving the ambiguity from earlier investigations. In the large U limit the model is equivalent to the 2D Kondo necklace model with two types of localized spins. In this limit the numerical results can be compared to those of the analytical bond operator method in mean field treatment and excellent agreement for the total paramagnetic moment is found, supporting the reliability of both methods.
View original:
http://arxiv.org/abs/1209.3670
No comments:
Post a Comment