Tuesday, August 21, 2012

1208.3989 (P. H. Y. Li et al.)

Spin-1/2 Heisenberg antiferromagnet on an anisotropic kagome lattice    [PDF]

P. H. Y. Li, R. F. Bishop, C. E. Campbell, D. J. J. Farnell, O. Götze, J. Richter
We use the coupled cluster method to study the zero-temperature properties of an extended two-dimensional Heisenberg antiferromagnet formed from spin-1/2 moments on an infinite spatially anisotropic kagome lattice of corner-sharing isosceles triangles, with nearest-neighbor bonds only. The bonds have exchange constants $J_{1}>0$ along two of the three lattice directions and $J_{2} \equiv \kappa J_{1} > 0$ along the third. In the classical limit the ground-state (GS) phase for $\kappa < 1/2$ has collinear ferrimagnetic (N\'{e}el$'$) order where the $J_2$-coupled chain spins are ferromagnetically ordered in one direction with the remaining spins aligned in the opposite direction, while for $\kappa > 1/2$ there exists an infinite GS family of canted ferrimagnetic spin states, which are energetically degenerate. For the spin-1/2 case we find that quantum analogs of both these classical states continue to exist as stable GS phases in some regions of the anisotropy parameter $\kappa$, namely for $0<\kappa<\kappa_{c_1}$ for the N\'{e}el$'$ state and for (at least part of) the region $\kappa>\kappa_{c_2}$ for the canted phase. However, they are now separated by a paramagnetic phase without either sort of magnetic order in the region $\kappa_{c_1} < \kappa < \kappa_{c_2}$, which includes the isotropic kagome point $\kappa = 1$ where the stable GS phase is now believed to be a topological ($\mathbb{Z}_2$) spin liquid. Our best numerical estimates are $\kappa_{c_1} = 0.515 \pm 0.015$ and $\kappa_{c_2} = 1.82 \pm 0.03$.
View original: http://arxiv.org/abs/1208.3989

No comments:

Post a Comment