Hong-Chen Jiang, Matthew S. Block, Ryan V. Mishmash, James R. Garrison, D. N. Sheng, Olexei I. Motrunich, Matthew P. A. Fisher
Developing a theoretical framework for conducting electronic fluids qualitatively distinct from those described by Landau's celebrated Fermi liquid theory is of central importance to many outstanding problems in condensed matter physics. Perhaps the most important such pursuit is a full microscopic characterization of the high-$T_c$ cuprate superconductors, where the so-called "strange metal" behavior above $T_c$ near optimal doping is inconsistent with being a traditional Landau Fermi liquid. Indeed, a microscopic theory of such a strange metal quantum phase could possibly shed new light on the interesting low-temperature behavior in the pseudogap regime and on the d-wave superconductor itself. Here, we present a theory for a specific example of a strange metal, which we term the "d-wave metal." Using variational wave functions, gauge theoretic arguments, and ultimately large-scale DMRG calculations, we establish compelling evidence that this remarkable quantum phase is the ground state of a reasonable microscopic Hamiltonian: the venerable $t-J$ model supplemented with a frustrated electron ring-exchange term, which we study extensively here on the two-leg ladder. These findings constitute one of the first explicit examples of a genuine non-Fermi liquid metal existing as the ground state of a realistic model.
View original:
http://arxiv.org/abs/1207.6608
No comments:
Post a Comment