Monday, July 30, 2012

1110.0440 (Seungmin Hong et al.)

Towards the Standard Model of Fermi Arcs from a Wilsonian Reduction of
the Hubbard Model
   [PDF]

Seungmin Hong, Philip Phillips
Two remarkable features emerge from the exact Wilsonian procedure for integrating out the high-energy scale in the Hubbard model. At low energies, the number of excitations that couple minimally to the electromagnetic gauge is less than the conserved charge, thereby implying a breakdown of Fermi liquid theory. In addition, two charge $e$ excitations emerge in the lower band, the standard projected electron and a composite entity (comprised of a hole and a charge $2e$ bosonic field) which give rise to poles and zeros of the single-particle Green function, respectively. The poles generate spectral weight along an arc centered at $(\pi/2,\pi/2)$ while the zeros kill the spectral intensity on the back-side of the arc. The result is the Fermi arc structure intrinsic to cuprate phenomenology. The presence of composite excitations also produces a broad incoherent pseudogap feature at the $(\pi,0)$ region of the Brillouin zone, thereby providing a mechanism for the nodal/anti-nodal dichotomy seen in the cuprates.
View original: http://arxiv.org/abs/1110.0440

No comments:

Post a Comment