Tuesday, May 22, 2012

1205.4248 (C. N. Veenstra et al.)

Unravelling the Surface-to-Bulk Progression of the Electronic Structure
in Sr2RuO4
   [PDF]

C. N. Veenstra, Z. -H. Zhu, B. Ludbrook, M. Capsoni, G. Levy, A. Nicolaou, J. A. Rosen, R. Comin, S. Kittaka, Y. Maeno, I. S. Elfimov, A. Damascelli
In search of the potential realization of novel normal-state phases on the surface of Sr2RuO4 - those stemming from either topological bulk properties or the interplay between spin-orbit coupling (SO) and the broken symmetry of the surface - we revisit the electronic structure of the top-most layers by ARPES with improved data quality as well as ab-initio LDA slab calculations. We find that the current model of a single surface layer (\surd2x\surd2)R45{\deg} reconstruction does not explain all detected features. The observed depth-dependent signal degradation, together with the close quantitative agreement with LDA+SO slab calculations based on the LEED-determined surface crystal structure, reveal that (at a minimum) the sub-surface layer also undergoes a similar although weaker reconstruction. This points to a surface-to-bulk progression of the electronic states driven by structural instabilities, with no evidence for Dirac and Rashba-type states or surface magnetism.
View original: http://arxiv.org/abs/1205.4248

No comments:

Post a Comment