Davide Rossini, Rosario Fazio
By means of the Density Matrix Renormalization Group technique, we accurately determine the zero-temperature phase diagram of the one-dimensional extended Bose Hubbard model with on-site and nearest-neighbor interactions. We analyze the scaling of the charge and of the neutral ground-state energy gaps, as well as of various order parameters. In this way we come to an accurate location of the boundaries between the superfluid and the insulating phases. In this last region we are able to distinguish between the conventional Mott insulating and density-wave phases, and an exotic Haldane phase displaying long-range string ordering, as originally predicted by E.G. Dalla Torre, E. Berg and E. Altman in Phys. Rev. Lett. 97, 260401 (2006).
View original:
http://arxiv.org/abs/1204.5964
No comments:
Post a Comment