Andrea Allais, T. Senthil
Loop current order has been reported in the pseudogap regime of a few cuprate systems in polarized neutron scattering experiments. Here we study several observable consequences of such order in the d-wave superconducting state at low T. The symmetries of the loop order removes degeneracy between momenta k and -k. Consequently there is a remnant Bogoliubov Fermi surface in the superconducting state. Bounds on the possible existence of such a Fermi surface may be placed from existing data. Detecting such a Fermi surface will be a very useful confirmation of the existence of loop order in various cuprates. We show through explicit calculations that the Bogoliubov Fermi surface does not display quantum oscillations in a magnetic field consistent with natural expectations. Inclusion of a field induced spin stripe order reconstructs the Bogoliubov Fermi surface to develop pockets which then show quantum oscillations in the superconducting state. Difficulties with interpreting quantum oscillation data in the cuprates along these lines are pointed out.
View original:
http://arxiv.org/abs/1204.5751
No comments:
Post a Comment