Tuesday, June 25, 2013

1306.5664 (J. Jiang et al.)

Observation of in-gap surface states in the Kondo insulator SmB6 by
photoemission
   [PDF]

J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. R. Ye, M. Xu, Q. Q. Ge, S. Y. Tan, X. H. Niu, M. Xia, B. P. Xie, Y. F. Li, X. H. Chen, H. H. Wen, D. L. Feng
Kondo insulators (KIs) are strongly correlated materials in which the interactions between 4f and conduction electrons lead to a hybridization gap opening at low temperature 1-2. SmB6 is a typical KI, but its resistivity does not diverge at low temperatures, which was attributed to some in-gap states 3-10. However after several decades of research, the nature and origin of the in-gap states remain unclear. Recent band calculation and transport measurements suggest that the in-gap states could actually be ascribed to topological surface states. SmB6 thus might be the first realization of topological Kondo insulator (TKI) 13, the strongly correlated version of topological insulator (TI) 11,12. Here by performing angle-resolved photoemission spectroscopy (ARPES), we directly observed several dispersive states within the hybridization gap of SmB6, which cross the Fermi level and show negligible kz dependence, indicative of their surface origin. Furthermore, the circular dichroism (CD) ARPES results of the in-gap states suggest the chirality of orbital momentum, and temperature dependent measurements have shown that the in-gap states vanish simultaneously with the hybridization gap around 150 K. These strongly suggest their possible topological origin.
View original: http://arxiv.org/abs/1306.5664

No comments:

Post a Comment