G. Simutis, S. Gvasaliya, M. Mansson, A. L. Chernyshev, A. Mohan, S. Singh, C. Hess, A. T. Savici, A. I. Kolesnikov, A. Piovano, T. Perring, I. Zaliznyak, B. Buchner, A. Zheludev
The S=1/2 spin chain material SrCuO2 doped with 1% S=1 Ni-impurities is studied by inelastic neutron scattering. At low temperatures, the spectrum shows a pseudogap \Delta ~ 8 meV, absent in the parent compound, and not related to any structural phase transition. The pseudogap is shown to be a generic feature of quantum spin chains with dilute defects. A simple model based on this idea quantitatively accounts for the exprimental data measured in the temperature range 2-300 K, and allows to represent the momentum-integrated dynamic structure factor in a universal scaling form.
View original:
http://arxiv.org/abs/1306.2614
No comments:
Post a Comment