Chia-Min Chung, Lars Bonnes, Pochung Chen, Andreas M. Läuchli
We present a numerical scheme to reconstruct a subset of the entanglement spectrum of quantum many body systems using quantum Monte Carlo. The approach builds on the replica trick to evaluate particle number resolved traces of the first n of powers of a reduced density matrix. From this information we reconstruct n entanglement spectrum levels using a polynomial root solver. We illustrate the power and limitations of the method by an application to the extended Bose-Hubbard model in one dimension where we are able to resolve the quasi-degeneracy of the entanglement spectrum in the Haldane-Insulator phase. In general the method is able to reconstruct the largest few eigenvalues in each symmetry sector and typically performs better when the eigenvalues are not too different.
View original:
http://arxiv.org/abs/1305.6536
No comments:
Post a Comment