T. Schäfer, G. Rohringer, O. Gunnarsson, S. Ciuchi, G. Sangiovanni, A. Toschi
Identifying the fingerprints of the Mott-Hubbard metal-insulator transition may be quite elusive in correlated metallic systems if the analysis is limited to the single particle level. However, our dynamical mean-field calculations demonstrate that the situation changes completely if the frequency dependence of the two-particle vertex functions is considered: The first non-perturbative precursors of the Mott physics are unambiguously identified well inside the metallic regime by the divergence of the local Bethe-Salpeter equation in the charge channel. At low temperatures this occurs in the region where incoherent high-energy features emerge in the spectral function, while at high temperatures it is traceable up to the atomic-limit.
View original:
http://arxiv.org/abs/1303.0246
No comments:
Post a Comment