Roman Pobel, Rainer Frankovsky, Dirk Johrendt
The compounds Ca(Fe1-xNix)2As2 with the tetragonal ThCr2Si2-type structure (space group I4/mmm) show a continuous transition of the interlayer As-As distances from a non-bonding state in CaFe2As2 (dAs-As = 313 pm) to single-bonded As2-dimers in CaNi2As2 (dAs-As = 260 pm). Magnetic measurements reveal weak ferromagnetism which develops near the composition Ca(Fe0.5Ni0.5)2As2, while the compounds with lower and higher nickel concentrations both are Pauli-paramagnetic. DFT band structure calculations reveal that the As2-dimer formation is a consequence of weaker metal-metal in MAs4-layers (M = Fe1-xNix) of Ni-richer compounds, and depends not on depopulation or shift of As-As antibonding states as suggested earlier. Our results also indicate that the ferromagnetism of Ca(Fe0.5Ni0.5)2As2 and related compounds like SrCo2(Ge0.5P0.5)2 is probably not induced by dimer breaking as recently suggested, but arises from the high density of states generated by the transition metal 3d bands near the Fermi level without contribution of the dimers.
View original:
http://arxiv.org/abs/1302.3046
No comments:
Post a Comment