Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, Xiao-Gang Wen
Symmetry protected topological (SPT) states are bulk gapped states with gapless edge excitations protected by certain symmetries. The SPT phases in free fermion systems, like topological insulators, can be classified by the K-theory. However, it is not known what SPT phases exist in general interacting systems. In this paper, we present a systematic way to construct SPT phases in interacting bosonic systems, which allows us to identify many new SPT phases, including three bosonic versions of topological insulators in three dimension and one in two dimension protected by particle number conservation and time reversal symmetry. Just as group theory allows us to construct 230 crystal structures in 3D, we find that group cohomology theory allows us to construct different interacting bosonic SPT phases in any dimensions and for any symmetry groups. In particular, we are going to show how topological terms in the path integral description of the system can be constructed from nontrivial group cohomology classes, giving rise to exactly soluble Hamiltonians, explicit ground state wave functions and symmetry protected gapless edge excitations.
View original:
http://arxiv.org/abs/1301.0861
No comments:
Post a Comment