Yi-Zhuang You, Chao-Ming Jian, Xiao-Gang Wen
Topological degeneracy is the degeneracy of the ground states in a many-body system in the large-system-size limit. Topological degeneracy cannot be lifted by any local perturbation of the Hamiltonian. The topological degeneracies on closed manifolds have been used to discover/define topological order in many-body systems, which contain excitations with fractional statistics. In this paper, we study a new type of topological degeneracy induced by condensing anyons along a line in 2D topological ordered states. Such topological degeneracy can be viewed as carried by each end of the line-defect, which is a generalization of Majorana zero-modes. The topological degeneracy can be used as a quantum memory. The ends of line-defects carry projective non-Abelian statistics, and braiding them allow us to perform fault tolerant quantum computations.
View original:
http://arxiv.org/abs/1208.4109
No comments:
Post a Comment