Wednesday, July 4, 2012

1207.0011 (C. Karrasch et al.)

Luttinger liquid physics from infinite-system DMRG    [PDF]

C. Karrasch, J. E. Moore
We study one-dimensional spinless fermions at zero and finite temperature T using the density matrix renormalization group. We consider nearest as well as next-nearest neighbor interactions; the latter render the system inaccessible by a Bethe ansatz treatment. Using an infinite-system alogrithm we demonstrate the emergence of Luttinger liquid physics at low energies for a variety of static correlation functions as well as for thermodynamic properties. The characteristic power law suppression of the momentum distribution n(k) function at T=0 can be directly observed over several orders of magnitude. At finite temperature, we show that n(k) obeys a scaling relation. The Luttinger liquid parameter and the renormalized Fermi velocity can be extracted from the density response function, the specific heat, and/or the susceptibility without the need to carry out any finite-size analysis. We illustrate that the energy scale below which Luttinger liquid power laws manifest vanishes as the half-filled system is driven into a gapped phase by large interactions.
View original: http://arxiv.org/abs/1207.0011

No comments:

Post a Comment