Julie A. Bert, Katja C. Nowack, Beena Kalisky, Hilary Noad, John R. Kirtley, Chris Bell, Hiroki K. Sato, Masayuki Hosoda, Yasayuki Hikita, Harold Y. Hwang, Kathryn A. Moler
The interface between the insulating oxides LaAlO3 and SrTiO3 exhibits a superconducting two-dimensional electron system that can be modulated by a gate voltage. While gating of the conductivity has been probed extensively and gating of the superconducting critical temperature has been demonstrated, the question whether, and if so how, the gate tunes the superfluid density and superconducting order parameter is unanswered. We present local magnetic susceptibility, related to the superfluid density, as a function of temperature, gate voltage and location. We show that the temperature dependence of the superfluid density at different gate voltages collapse to a single curve characteristic of a full superconducting gap. Further, we show that the dipole moments observed in this system are not modulated by the gate voltage.
View original:
http://arxiv.org/abs/1205.4064
No comments:
Post a Comment