Pina Romaniello, Friedhelm Bechstedt, Lucia Reining
In many-body perturbation theory (MBPT) the self-energy \Sigma=iGW\Gamma plays the key role since it contains all the many body effects of the system. The exact self-energy is not known; as first approximation one can set the vertex function \Gamma to unity which leads to the GW approximation. The latter properly describes the high-density regime, where screening is important; in the low-density regime, instead, other approximations are proposed, such as the T matrix, which describes multiple scattering between two particles. Here we combine the two approaches. Starting from the fundamental equations of MBPT we show how one can derive the T-matrix approximation to the self-energy in a common framework with GW. This allows us to elucidate several aspects of this formulation, including the origin of, and link between, the electron-hole and the particle-particle T matrix, the derivation of a screened T matrix, and the conversion of the T matrix into a vertex correction. The exactly solvable Hubbard molecule is used for illustration.
View original:
http://arxiv.org/abs/1204.4463
No comments:
Post a Comment