M. M. Maska, M. Mierzejewski, E. A. Kochetov, L. Vidmar, J. Bonca, O. P. Sushkov
We argue that the t-J model and the recently proposed Ising version of this model give the same physical picture of the Nagaoka regime for J/t << 1. In particular, both models are shown to give compatible results for a single Nagaoka polaron as well as for a Nagaoka bipolaron. When compared to the standard t-J or t-Jz models, the Ising version allows for a numerical analysis on much larger clusters by means of classical Monte Carlo simulations. Taking the advantage of this fact, we study the low doping regime of t-J model for J/t << 1 and show that the ground state exhibits phase separation into hole-rich ferromagnetic and hole-depleted antiferromagnetic regions. This picture holds true up to a threshold concentration of holes, \delta < \delta_t ~ 0.44 \sqrt{J/t}. Analytical calculations show that \delta_t=\sqrt{J/2\pi t}.
View original:
http://arxiv.org/abs/1204.3824
No comments:
Post a Comment