Peng Ye, Long Zhang, Zheng-Yu Weng
In this work, we present a topological characterization of superconductivity in a prototype electron fractionalization model for doped Mott insulators. In this model, spinons and holons are coupled via the mutual Chern-Simons gauge fields. We obtain a low-lying effective description of the collective current fluctuations by integrating out the matter fields, which replaces the conventional Ginzburg-Landau action to describe the generalized rigidity of superconductivity. The superconducting phase coherence is essentially characterized by a topological order parameter related to a Gaussian linking number, and an experiment is proposed to probe this topological property. We further show that a gauge-neutral fermionic mode can naturally emerge in this model, which behaves like a Bogoliubov quasiparticle.
View original:
http://arxiv.org/abs/1110.0125
No comments:
Post a Comment