K. Balzer, S. Hermanns, M. Bonitz
For a quantum many-body system, the direct population of states of double-excitation character is a clear indication that correlations importantly contribute to its nonequilibrium properties. We analyze such correlation-induced transitions by propagating the nonequilibrium Green's functions in real-time within the second Born approximation. As crucial benchmarks, we compute the absorption spectrum of few electrons confined in quantum wells of different width. Our results include the full two-time solution of the Kadanoff-Baym equations as well as of their time-diagonal limit and are compared to Hartree-Fock and exact diagonalization data.
View original:
http://arxiv.org/abs/1203.4765
No comments:
Post a Comment