1203.2829 (Richard Berkovits)
Richard Berkovits
The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using density matrix renormalization group (DMRG). A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite size effects, is proposed. This is used to extract the localization length as function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.
View original:
http://arxiv.org/abs/1203.2829
No comments:
Post a Comment