Wei-Qiang Chen, J. Y. Gan, T. M. Rice, F. C. Zhang
A more extended low density region of coexisting uniform antiferromagnetism
and d-wave superconductivity has been reported in multilayer cuprates, when
compared to single or bilayer cuprates. This coexistence could be due to the
enhanced screening of random potential modulations in inner layers or to the
interlayer Heisenberg and Josephson couplings. A theoretical analysis using a
renormalized mean field theory, favors the former explanation. The potential
for an improved determination of the antiferromagnetic and superconducting
order parameters in an ideal single layer from zero field NMR and infrared
Josephson plasma resonances in multilayer cuprates is discussed.
View original:
http://arxiv.org/abs/1202.4055
No comments:
Post a Comment