G. Seibold, M. Grilli, J. Lorenzana
We present a short account of the present experimental situation of stripes
in cuprates followed by a review of our present understanding of their ground
state and excited state properties. Collective modes, the dynamical structure
factor, and the optical conductivity of stripes are computed using the
time-dependent Gutzwiller approximation applied to realistic one band and three
band Hubbard models, and are found to be in excellent agreement with
experiment. On the other hand, experiments like angle-resolved photoemission
and scanning tunneling microscopy show the coexistence of stripes at high
energies with Fermi liquid quasiparticles at low energies. We show that a
phenomenological model going beyond mean-field can reconcile this dynamic
dichotomy.
View original:
http://arxiv.org/abs/1202.1615
No comments:
Post a Comment