C. Psaroudaki, S. A. Zvyagin, J. Krzystek, A. Paduan-Filho, X. Zotos, N. Papanicolaou
The spin-1 anisotropic antiferromagnet NiCl_2-4SC(NH2)_2 exhibits a
field-induced quantum phase transition that is formally analogous to
Bose-Einstein condensation. Here we present results of systematic high-field
electron spin resonance (ESR) experimental and theoretical studies of this
compound with a special emphasis on single-ion two-magnon bound states. In
order to clarify some remaining discrepancies between theory and experiment,
the frequency-field dependence of magnetic excitations in this material is
reanalyzed. In particular, a more comprehensive interpretation of the
experimental signature of single-ion two-magnon bound states is shown to be
fully consistent with theoretical results. We also clarify the structure of the
ESR spectrum in the so-called intermediate phase.
View original:
http://arxiv.org/abs/1111.5017
No comments:
Post a Comment